Properties

Label 1344.8572.4.r1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_{14}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $ac^{7}d, c^{2}, d^{6}, d^{12}, bd^{3}, d^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{56}:D_6$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2$
$\operatorname{Aut}(H)$ $C_2^3\times S_3\times F_7$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_6\times D_{14}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_{56}:D_6$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$D_{28}.D_6$$D_{12}:D_{14}$$C_{24}.D_{14}$
Maximal under-subgroups:$S_3\times C_{28}$$C_7:C_{24}$$C_{21}:C_8$$C_{14}:C_8$$S_3\times C_8$

Other information

Möbius function$2$
Projective image$D_{12}:D_{14}$