Properties

Label 1344.8553.4.e1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}:Q_8$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, d^{56}, d^{126}, d^{24}, bd^{133}, d^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{56}:D_6$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $(C_2\times C_6^2).C_2^5$
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2 \rtimes (D_4:C_2^4)$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(28\)\(\medspace = 2^{2} \cdot 7 \)
$W$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$D_{56}:D_6$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_{28}.D_{12}$$C_{84}.D_4$$D_{28}:D_6$
Maximal under-subgroups:$C_2\times C_{84}$$C_{21}:Q_8$$C_{21}:Q_8$$C_6:C_{28}$$C_{21}:Q_8$$Q_8\times C_{14}$$C_6:Q_8$

Other information

Möbius function$2$
Projective image$D_{12}:D_{14}$