Properties

Label 1344.8546.6.h1.b1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{56}:C_2$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $ab, d^{24}, d^{21}, d^{126}, c, d^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{56}:D_6$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_8:C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{W}$\(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_{56}:C_2^2$
Normal closure:$D_{56}:S_3$
Core:$D_{56}$
Minimal over-subgroups:$D_{56}:S_3$$D_{56}:C_2^2$
Maximal under-subgroups:$D_{56}$$D_{28}:C_2$$D_{28}:C_2$$C_2\times C_{56}$$C_{56}:C_2$$C_{56}:C_2$$C_7:Q_{16}$$D_8:C_2$
Autjugate subgroups:1344.8546.6.h1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed