Properties

Label 1344.8546.28.j1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_2^3$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ad^{126}, d^{56}, bd^{42}, cd^{9}, d^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{56}:D_6$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $S_3\times C_2^3:S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\card{W}$\(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_4:D_6$
Normal closure:$D_{28}:D_6$
Core:$C_6:C_4$
Minimal over-subgroups:$D_{14}.D_6$$D_4:D_6$
Maximal under-subgroups:$C_6:C_4$$C_2^2\times C_6$$C_6:C_4$$C_6:C_4$$C_6:C_4$$C_6:C_4$$C_6:C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this conjugacy class$14$
Möbius function not computed
Projective image not computed