Subgroup ($H$) information
| Description: | $C_3\times \SD_{16}$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$ac, d^{84}, d^{21}, d^{56}, d^{42}$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $D_{56}:D_6$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{21}.(C_6\times D_4).C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{W}$ | \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $7$ |
| Möbius function | not computed |
| Projective image | not computed |