Properties

Label 1344.8546.16.k1.a1
Order $ 2^{2} \cdot 3 \cdot 7 $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{12}$
Order: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ac, d^{84}, d^{24}, d^{56}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{56}:D_6$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{21}.(C_6\times D_4).C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{W}$\(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_{28}:D_6$
Normal closure:$C_{21}:Q_8$
Core:$C_{42}$
Minimal over-subgroups:$C_{21}:Q_8$$C_{21}:D_4$$C_7:D_{12}$$C_6.D_{14}$$C_{12}\times D_7$$D_{21}:C_4$$C_{21}:Q_8$
Maximal under-subgroups:$C_{42}$$C_7:C_4$$C_{12}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed