Subgroup ($H$) information
Description: | $C_{21}:\SD_{16}$ |
Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Generators: |
$abc^{15}, d^{2}, c^{6}, c^{12}, bd^{7}, c^{8}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $D_{56}.D_6$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_{84}).C_6.C_2^6$ |
$\operatorname{Aut}(H)$ | $C_{42}.(C_2^4\times C_6)$ |
$\card{W}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Related subgroups
Centralizer: | $C_2$ | ||||
Normalizer: | $D_{56}.D_6$ | ||||
Minimal over-subgroups: | $C_{84}.D_4$ | $C_{24}.D_{14}$ | $D_{56}:S_3$ | ||
Maximal under-subgroups: | $C_3\times D_{28}$ | $C_{21}:Q_8$ | $C_{21}:C_8$ | $Q_8:D_7$ | $C_3:\SD_{16}$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | not computed |