Subgroup ($H$) information
Description: | $C_7:Q_{16}$ |
Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Generators: |
$ac^{9}, c^{6}, c^{12}, c^{9}d^{7}, d^{2}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{56}.D_6$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_{84}).C_6.C_2^6$ |
$\operatorname{Aut}(H)$ | $D_8:C_2\times F_7$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\card{W}$ | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Related subgroups
Centralizer: | $C_{12}$ | ||
Normalizer: | $D_{56}.D_6$ | ||
Minimal over-subgroups: | $C_{21}:Q_{16}$ | $D_{56}:C_2$ | $D_7\times Q_{16}$ |
Maximal under-subgroups: | $C_7:Q_8$ | $C_{56}$ | $Q_{16}$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |