Properties

Label 1344.8508.2.c1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_{28}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(2\)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $a, d^{56}, cd^{167}, d^{42}, bc, d^{24}, d^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{12}.D_{28}$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{84}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_{42}.(C_2^4\times C_6).C_2^2$
$\card{\operatorname{res}(S)}$\(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_6\times D_{28}$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{12}.D_{28}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{12}.D_{28}$
Maximal under-subgroups:$D_{84}:C_2$$C_{42}:Q_8$$C_{12}.C_{28}$$C_{21}:\SD_{16}$$C_{21}:Q_{16}$$C_4.D_{28}$$C_{12}.D_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$D_6\times D_{28}$