Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$c^{6}d^{14}, c^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $(C_4\times D_6).D_{14}$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $Q_8.D_{14}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Automorphism Group: | $C_2\wr S_4\times F_7$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
Outer Automorphisms: | $C_6\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(64512\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\card{W}$ | \(2\) |
Related subgroups
Centralizer: | $(C_2\times C_{12}).D_{14}$ | ||||||
Normalizer: | $(C_4\times D_6).D_{14}$ | ||||||
Minimal over-subgroups: | $C_{42}$ | $C_2\times C_6$ | $D_6$ | $D_6$ | $C_{12}$ | $C_3:C_4$ | $C_3:C_4$ |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Möbius function | not computed |
Projective image | not computed |