Properties

Label 1344.772.21.a1.a1
Order $ 2^{6} $
Index $ 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_8$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{84}.D_8$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Automorphism Group: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_6\times D_4^2$
$\operatorname{Aut}(H)$ $C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_{42}$
Normalizer:$C_{84}.D_8$
Complements:$C_{21}$
Minimal over-subgroups:$C_{28}.D_8$$C_{12}.D_8$
Maximal under-subgroups:$C_4:Q_8$$C_4:C_8$$C_4:C_8$

Other information

Möbius function$1$
Projective image$C_2^2:C_{84}$