Properties

Label 1344.6795.42.h1.a1
Order $ 2^{5} $
Index $ 2 \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $b, c^{3}, d^{7}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_8:C_2\times F_7$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_3\times D_4^2).C_2^2$
$\operatorname{Aut}(H)$ $C_4.D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{24}:C_2^3$
Normal closure:$D_7\times D_8$
Core:$D_8$
Minimal over-subgroups:$D_7\times D_8$$C_6\times D_8$$C_8:C_2^3$
Maximal under-subgroups:$D_8$$C_2\times D_4$$D_8$$C_2\times D_4$$D_8$$C_2\times C_8$$D_8$
Autjugate subgroups:1344.6795.42.h1.b1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$C_2\times D_4\times F_7$