Properties

Label 1344.627.2.a1.b1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_{12}):C_{28}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(2\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ab, b^{4}, c^{21}, c^{6}, b^{6}c^{21}, c^{14}, a^{2}c^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_4^2$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6.(C_2^4\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $(C_2^5\times C_6^2).C_2^3$
$\card{\operatorname{res}(S)}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{28}$
Normalizer:$C_{84}.C_4^2$
Minimal over-subgroups:$C_{84}.C_4^2$
Maximal under-subgroups:$C_{12}:C_{28}$$C_{12}:C_{28}$$C_2^2\times C_{84}$$C_{12}:C_{28}$$C_{42}.D_4$$C_4^2:C_{14}$$C_2^3.D_6$
Autjugate subgroups:1344.627.2.a1.a1

Other information

Möbius function$-1$
Projective image$C_{12}:C_4$