Properties

Label 1344.4135.4.n1.a1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{84}:C_2$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ad^{21}, d^{12}, c^{2}d^{21}, d^{42}, b, d^{28}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $(C_{21}\times A_4).C_6.C_2^3$
$\card{\operatorname{res}(S)}$\(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2\times D_{42}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4:D_{42}$
Normal closure:$D_4:D_{42}$
Core:$Q_8\times C_{21}$
Minimal over-subgroups:$D_4:D_{42}$
Maximal under-subgroups:$Q_8\times C_{21}$$D_{84}$$D_{84}$$C_4\times D_{21}$$C_4\times D_{21}$$D_{84}$$C_4\times D_{21}$$D_{28}:C_2$$D_{12}:C_2$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{42}:D_4$