Properties

Label 1344.4135.28.f1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{12}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab, d^{28}, c^{2}d^{21}, d^{21}, d^{42}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$D_{12}:C_2^3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$\OD_{16}:D_6$
Normal closure:$C_2\times D_{84}$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_2\times D_{84}$$D_4:D_6$$C_{12}.D_4$$C_4.D_{12}$
Maximal under-subgroups:$C_2\times C_{12}$$C_2\times D_6$$C_2\times D_6$$D_{12}$$D_{12}$$C_2\times D_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-2$
Projective image$D_{42}:D_4$