Properties

Label 1344.4135.14.f1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}:C_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $b, d^{28}, d^{42}, c, c^{2}, d^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^2$
$\operatorname{Aut}(H)$ $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_6:D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$\OD_{16}:D_6$
Normal closure:$D_{84}:C_4$
Core:$C_{12}:C_4$
Minimal over-subgroups:$D_{84}:C_4$$\OD_{16}:D_6$
Maximal under-subgroups:$C_{12}:C_4$$D_{12}:C_2$$C_3\times \OD_{16}$$C_4\wr C_2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$D_{42}:D_4$