Properties

Label 1344.3515.6.d1.a1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:D_{14}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, d^{6}, c, b^{2}, b, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{84}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $(C_2^3\times C_7:C_3).C_2^5$
$\operatorname{res}(S)$$D_4\times C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times D_{28}$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{28}.D_4$
Normal closure:$C_{42}:\SD_{16}$
Core:$C_{14}:Q_8$
Minimal over-subgroups:$C_{42}:\SD_{16}$$D_{28}.D_4$
Maximal under-subgroups:$C_{14}:Q_8$$C_2\times D_{28}$$C_2\times C_{56}$$C_{56}:C_2$$C_{56}:C_2$$C_2\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_6:D_{28}$