Subgroup ($H$) information
Description: | $C_{12}.D_{28}$ |
Order: | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Generators: |
$acd^{91}, d^{56}, d^{42}, cd^{126}, bd^{73}, d^{24}, d^{84}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $D_{84}.D_4$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^2$ |
$\operatorname{Aut}(H)$ | $C_{42}.(C_2^4\times C_6).C_2^2$ |
$\card{W}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
Related subgroups
Centralizer: | $C_2$ | ||||||
Normalizer: | $D_{84}.D_4$ | ||||||
Minimal over-subgroups: | $D_{84}.D_4$ | ||||||
Maximal under-subgroups: | $D_{84}:C_2$ | $C_{42}:Q_8$ | $C_{12}.C_{28}$ | $C_{21}:\SD_{16}$ | $C_{21}:Q_{16}$ | $C_4.D_{28}$ | $C_{12}.D_4$ |
Other information
Möbius function | not computed |
Projective image | not computed |