Subgroup ($H$) information
| Description: | $C_2^2$ | 
| Order: | \(4\)\(\medspace = 2^{2} \) | 
| Index: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| Exponent: | \(2\) | 
| Generators: | $b, d^{84}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), stem, a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
| Description: | $(S_3\times C_{14}):\SD_{16}$ | 
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) | 
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $S_3\times D_{28}$ | 
| Order: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) | 
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Automorphism Group: | $C_{42}.(C_2^4\times C_6)$ | 
| Outer Automorphisms: | $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^3$ | 
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(64512\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7 \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
Other information
| Möbius function | $0$ | 
| Projective image | $S_3\times D_{28}$ | 
