Properties

Label 1344.2716.168.b1.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{3}c^{7}, c^{84}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6.(C_4\times D_{28})$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{28}:Q_8$
Normalizer:$C_4^2.D_{14}$
Normal closure:$C_6:C_4$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times C_{28}$$C_6:C_4$$C_4^2$$C_4^2$$C_4:C_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$S_3\times D_{28}$