Properties

Label 1344.2538.96.b1.a1
Order $ 2 \cdot 7 $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{2}, c^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{168}.D_4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_8.D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{56}:D_6$
Normalizer:$C_{168}.D_4$
Minimal over-subgroups:$C_{42}$$C_2\times C_{14}$$C_2\times C_{14}$$C_7:C_4$
Maximal under-subgroups:$C_7$$C_2$
Autjugate subgroups:1344.2538.96.b1.b1

Other information

Möbius function$0$
Projective image$C_{24}.D_{14}$