Properties

Label 1344.2474.672.a1.b1
Order $ 2 $
Index $ 2^{5} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(2\)
Generators: $b^{2}c^{84}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{168}.(C_2\times C_4)$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{24}.D_{14}$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Automorphism Group: $C_{42}.(C_2^5\times C_6)$
Outer Automorphisms: $C_2^2\times C_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{42}.(C_2^5\times C_6).C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(64512\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{168}.(C_2\times C_4)$
Normalizer:$C_{168}.(C_2\times C_4)$
Minimal over-subgroups:$C_{14}$$C_6$$C_2^2$$C_4$$C_4$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1344.2474.672.a1.a1

Other information

Möbius function$0$
Projective image$C_{24}.D_{14}$