Subgroup ($H$) information
| Description: | $C_{12}:C_4$ | 
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | 
		
    $b, c^{56}, c^{42}, b^{2}, c^{84}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $D_{42}:\OD_{16}$ | 
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) | 
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_{14}$ | 
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) | 
| Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) | 
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) | 
| Derived length: | $2$ | 
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^7\times S_3\times F_7$ | 
| $\operatorname{Aut}(H)$ | $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) | 
| $W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Möbius function | $-14$ | 
| Projective image | $S_3\times D_{14}$ |