Subgroup ($H$) information
Description: | $C_{14}$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$c^{2}, d^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $(C_2\times D_6):D_{28}$ |
Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $D_6:D_4$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Outer Automorphisms: | $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{42}.(C_2^4\times C_6).C_2^2$ |
$\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $D_6:D_{28}$ |