Properties

Label 1344.1743.6.e1.b1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}:Q_{16}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $ac^{9}d^{14}, d^{4}, c^{6}d^{14}, d^{7}, bcd^{14}, d^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{28}.(S_3\times D_4)$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_{42}).C_6.C_2^5$
$\operatorname{Aut}(H)$ $(C_2^4\times C_7:C_3).C_2^4$
$\card{W}$\(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2.D_{14}$
Normal closure:$C_{42}:Q_{16}$
Core:$C_{14}:Q_8$
Minimal over-subgroups:$C_{42}:Q_{16}$$C_4^2.D_{14}$
Maximal under-subgroups:$C_{14}:Q_8$$Q_8\times C_{14}$$C_{14}:C_8$$C_7:Q_{16}$$C_7:Q_{16}$$C_2\times Q_{16}$
Autjugate subgroups:1344.1743.6.e1.a1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed