Properties

Label 1344.1743.32.b1.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $c^{6}, d^{4}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{28}.(S_3\times D_4)$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $Q_{16}:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $D_4^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_{42}).C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_4\times C_{84}$
Normalizer:$C_{28}.(S_3\times D_4)$
Minimal over-subgroups:$C_2\times C_{42}$$C_3\times D_{14}$$C_{84}$
Maximal under-subgroups:$C_{21}$$C_{14}$$C_6$
Autjugate subgroups:1344.1743.32.b1.b1

Other information

Möbius function not computed
Projective image not computed