Subgroup ($H$) information
| Description: | $C_{12}:C_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$a, c^{28}, b^{6}, b^{4}, c^{42}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $(C_2\times C_{28}).D_{12}$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $D_{14}$ |
| Order: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{42}.(C_2^5\times C_6).C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2^4:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \) |
| $W$ | $D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $-14$ |
| Projective image | $C_{14}:D_{12}$ |