Properties

Label 1344.11633.6.a1
Order $ 2^{5} \cdot 7 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times D_{14}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ac, e^{6}, cd^{2}e^{21}, d, b, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(322560\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\wr D_6.F_7$, of order \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \)
$\card{W}$\(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{84}.C_2^4$
Complements:$C_6$ $C_6$
Minimal over-subgroups:$C_{84}.C_2^3$$C_{14}.C_2^5$
Maximal under-subgroups:$C_4\times D_{14}$$C_{14}:Q_8$$Q_8\times C_{14}$$Q_8\times D_7$$Q_8\times D_7$$C_2^2\times Q_8$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$5$
Möbius function not computed
Projective image not computed