Properties

Label 1344.11633.14.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_2^4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{2}, e^{14}, c, d, e^{21}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(322560\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\wr S_5$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_3\times D_{14}$
Normalizer:$C_{84}.C_2^4$
Complements:$D_7$ $D_7$
Minimal over-subgroups:$C_{84}.C_2^3$$C_{12}.C_2^4$
Maximal under-subgroups:$C_6\times Q_8$$D_4:C_6$$C_4.C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed