Properties

Label 1344.11566.14.e1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8.D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, e^{14}, d^{2}, bc, d, e^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times C_2\wr S_4$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(S)$$S_3\times D_4^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2^3\times D_6$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{12}.C_2^4$
Normal closure:$D_{12}.D_{14}$
Core:$D_{12}:C_2$
Minimal over-subgroups:$D_{12}.D_{14}$$C_{12}.C_2^4$
Maximal under-subgroups:$D_{12}:C_2$$D_{12}:C_2$$D_{12}:C_2$$C_6\times Q_8$$D_{12}:C_2$$S_3\times Q_8$$D_{12}:C_2$$S_3\times Q_8$$C_4.C_2^3$

Other information

Number of subgroups in this autjugacy class$21$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$1$
Projective image$C_{21}:C_2^5$