Subgroup ($H$) information
| Description: | $C_{12}$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Index: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$d^{3}e^{21}, e^{14}, d^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{84}.C_2^4$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2\times D_{14}$ |
| Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
| Outer Automorphisms: | $C_3\times C_2^3:\GL(3,2)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | $-448$ |
| Projective image | $C_{21}:C_2^5$ |