Properties

Label 1344.10467.4.m1
Order $ 2^{4} \cdot 3 \cdot 7 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_{42}$
Order: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $a, c^{4}, d^{21}, d^{14}, b, d^{6}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times D_4\times S_4\times F_7$
$\operatorname{Aut}(H)$ $C_6\times C_2^4:D_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{42}$
Normalizer:$C_{84}.C_2^3$
Normal closure:$C_{84}.C_2^3$
Core:$D_4\times C_{21}$
Minimal over-subgroups:$C_{84}.C_2^3$
Maximal under-subgroups:$D_4\times C_{21}$$D_4\times C_{21}$$C_2^2\times C_{42}$$C_2\times C_{84}$$D_4\times C_{21}$$D_4\times C_{14}$$C_6\times D_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed