Subgroup ($H$) information
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Index: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$bc^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
| Description: | $C_{84}.C_2^4$ |
| Order: | \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times D_4\times S_4\times F_7$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $\card{W}$ | \(2\) |
Related subgroups
| Centralizer: | $D_4:C_6$ | ||||||
| Normalizer: | $C_6.C_2^4$ | ||||||
| Normal closure: | $C_7:Q_8$ | ||||||
| Core: | $C_2$ | ||||||
| Minimal over-subgroups: | $C_7:C_4$ | $C_{12}$ | $D_4$ | $C_2\times C_4$ | $C_2\times C_4$ | $Q_8$ | $Q_8$ |
| Maximal under-subgroups: | $C_2$ |
Other information
| Number of subgroups in this autjugacy class | $42$ |
| Number of conjugacy classes in this autjugacy class | $3$ |
| Möbius function | not computed |
| Projective image | not computed |