Properties

Label 1344.10467.192.a1
Order $ 7 $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(7\)
Generators: $d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{12}.C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $\GL(2,\mathbb{Z}/4):C_2^3$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Outer Automorphisms: $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times D_4\times S_4\times F_7$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_{84}.C_2^3$
Normalizer:$C_{84}.C_2^4$
Complements:$C_{12}.C_2^4$
Minimal over-subgroups:$C_{21}$$C_{14}$$C_{14}$$C_{14}$$D_7$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed