Properties

Label 1344.10467.112.e1
Order $ 2^{2} \cdot 3 $
Index $ 2^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ac^{3}, c^{4}, d^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{84}.C_2^4$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times D_4\times S_4\times F_7$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_6\times Q_8$
Normalizer:$C_6.C_2^4$
Normal closure:$C_3\times D_{28}$
Core:$C_6$
Minimal over-subgroups:$C_3\times D_{14}$$C_3\times D_4$$C_2\times C_{12}$$C_3\times D_4$
Maximal under-subgroups:$C_6$$C_6$$C_2^2$

Other information

Number of subgroups in this autjugacy class$14$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed