Properties

Label 1344.10410.2.b1.a1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{84}.D_4$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(2\)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $a, d^{4}, c^{21}, c^{14}, bd, c^{6}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{168}.C_2^3$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7.(C_{12}\times D_4).C_2^4$
$\operatorname{Aut}(H)$ $D_4\times C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times C_2^3\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4\times D_7$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{168}.C_2^3$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{168}.C_2^3$
Maximal under-subgroups:$D_4:C_{42}$$D_{28}:C_6$$C_{14}:C_{24}$$C_{21}:D_8$$C_{21}:\SD_{16}$$C_{21}:\SD_{16}$$C_{21}:Q_{16}$$C_{28}.D_4$$D_8:C_6$

Other information

Möbius function$-1$
Projective image$D_4\times D_{14}$