Subgroup ($H$) information
| Description: | $C_{37}:C_9$ |
| Order: | \(333\)\(\medspace = 3^{2} \cdot 37 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(333\)\(\medspace = 3^{2} \cdot 37 \) |
| Generators: |
$a, a^{3}, b^{4}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Ambient group ($G$) information
| Description: | $C_{148}:C_9$ |
| Order: | \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
| Exponent: | \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.
Quotient group ($Q$) structure
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \) |
| $\operatorname{Aut}(H)$ | $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $F_{37}$, of order \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_{37}:C_9$, of order \(333\)\(\medspace = 3^{2} \cdot 37 \) |
Related subgroups
| Centralizer: | $C_4$ | |
| Normalizer: | $C_{148}:C_9$ | |
| Complements: | $C_4$ | |
| Minimal over-subgroups: | $C_{37}:C_{18}$ | |
| Maximal under-subgroups: | $C_{37}:C_3$ | $C_9$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{148}:C_9$ |