Properties

Label 133100.bf.5.b1
Order $ 2^{2} \cdot 5 \cdot 11^{3} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{11}^3:C_{10}$
Order: \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)
Index: \(5\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, d, b^{22}, b^{10}, b^{55}, cd^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^3:C_{10}^2$
Order: \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_5.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{11}^3.C_5.C_{10}^2.C_2^3$
$W$$C_{11}^3:(C_5\times C_{10})$, of order \(66550\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}^3:C_{10}^2$
Complements:$C_5$ $C_5$ $C_5$
Minimal over-subgroups:$C_{11}^3:C_{10}^2$
Maximal under-subgroups:$C_{11}^2:C_{110}$$C_{11}^3:C_{10}$$C_{11}^2:D_{22}$$C_{22}:F_{11}$$C_{22}:F_{11}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{11}^3:(C_5\times C_{10})$