Properties

Label 13310.u.2662.a1
Order $ 5 $
Index $ 2 \cdot 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(2662\)\(\medspace = 2 \cdot 11^{3} \)
Exponent: \(5\)
Generators: $a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{11}^3:C_{10}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{10}.\PSL(3,11)$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}$
Normal closure:$C_{11}^3:C_5$
Core:$C_1$
Minimal over-subgroups:$C_{11}:C_5$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$1331$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1331$
Projective image$C_{11}^3:C_{10}$