Properties

Label 13310.t.13310.a1
Order $ 1 $
Index $ 2 \cdot 5 \cdot 11^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_{11}^3:C_{10}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{11}^3:C_{10}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $C_{11}^3.C_{10}.C_{10}^2.C_2$
Outer Automorphisms: $D_4\times C_5^2$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{10}.C_{10}^2.C_2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{11}^3:C_{10}$
Normalizer:$C_{11}^3:C_{10}$
Complements:$C_{11}^3:C_{10}$
Minimal over-subgroups:$C_{11}$$C_{11}$$C_{11}$$C_{11}$$C_{11}$$C_5$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1331$
Projective image$C_{11}^3:C_{10}$