Properties

Label 1320.29.2.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{66}:C_{10}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(2\)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}, b^{88}, b^{66}, b^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{132}:C_{10}$
Order: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}:(C_2^2\times C_{10}\times S_3)$
$\operatorname{Aut}(H)$ $D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_{33}:C_{10}$, of order \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{132}:C_{10}$
Minimal over-subgroups:$C_{132}:C_{10}$
Maximal under-subgroups:$C_{11}:C_{30}$$C_{33}:C_{10}$$C_{33}:C_{10}$$C_{22}:C_{10}$$S_3\times C_{22}$$S_3\times C_{10}$

Other information

Möbius function$-1$
Projective image$C_{66}:C_{10}$