Properties

Label 1312.8.41.a1.a1
Order $ 2^{5} $
Index $ 41 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(41\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{164}.D_4$
Order: \(1312\)\(\medspace = 2^{5} \cdot 41 \)
Exponent: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{41}$
Order: \(41\)
Exponent: \(41\)
Automorphism Group: $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_{40}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{40}\times D_4^2.C_2$
$\operatorname{Aut}(H)$ $C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2^2:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{82}$
Normalizer:$C_{164}.D_4$
Complements:$C_{41}$
Minimal over-subgroups:$C_{164}.D_4$
Maximal under-subgroups:$C_2\times Q_8$$\OD_{16}$$\OD_{16}$

Other information

Möbius function$-1$
Projective image$C_2^2:C_{164}$