Properties

Label 1312.8.164.c1.a1
Order $ 2^{3} $
Index $ 2^{2} \cdot 41 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(164\)\(\medspace = 2^{2} \cdot 41 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{2}, b$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_{164}.D_4$
Order: \(1312\)\(\medspace = 2^{5} \cdot 41 \)
Exponent: \(328\)\(\medspace = 2^{3} \cdot 41 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{40}\times D_4^2.C_2$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{82}$
Normalizer:$Q_8\times C_{82}$
Normal closure:$C_2\times Q_8$
Core:$C_4$
Minimal over-subgroups:$Q_8\times C_{41}$$C_2\times Q_8$
Maximal under-subgroups:$C_4$$C_4$$C_4$
Autjugate subgroups:1312.8.164.c1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2^2:C_{164}$