Properties

Label 1310720000.c.2000._.B
Order $ 2^{17} \cdot 5 $
Index $ 2^{4} \cdot 5^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(655360\)\(\medspace = 2^{17} \cdot 5 \)
Index: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: not computed
Generators: $\langle(35,36)(39,40), (11,12)(13,14)(17,18)(19,20)(23,24)(25,26)(31,32)(33,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, nonabelian, metabelian (hence solvable), and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2^{16}.C_5^3.C_{10}.C_2^4$
Order: \(1310720000\)\(\medspace = 2^{21} \cdot 5^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5\times D_{10}^2$
Order: \(2000\)\(\medspace = 2^{4} \cdot 5^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_{10}^2.A_4.C_4^3.C_2^2$
Outer Automorphisms: $C_2\wr D_6.C_4$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(377487360000\)\(\medspace = 2^{26} \cdot 3^{2} \cdot 5^{4} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed