Properties

Label 130636800.b.1120._.A
Order $ 2^{5} \cdot 3^{6} \cdot 5 $
Index $ 2^{5} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:A_4\times A_6$
Order: \(116640\)\(\medspace = 2^{5} \cdot 3^{6} \cdot 5 \)
Index: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,5)(2,6,3,4)(7,15,12,9,14,11,8,13,10), (7,14,11)(8,13,10)(9,15,12), (8,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $S_6\times A_9$
Order: \(130636800\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5^{2} \cdot 7 \)
Exponent: \(1260\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_9.A_6.C_2^3$
$\operatorname{Aut}(H)$ $C_3^3:C_2^2.D_6.A_6.C_2^2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$280$
Möbius function not computed
Projective image not computed