Subgroup ($H$) information
| Description: | $C_3\times A_4$ | 
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Index: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\langle(10,15,12), (8,12)(10,15), (1,3,2)(5,6,7), (1,2,3)(5,7,6)(8,10)(12,15)\rangle$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $(C_3\times \GL(2,4)):S_4$ | 
| Order: | \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.Q_8.(S_3\times S_4).S_5$ | 
| $\operatorname{Aut}(H)$ | $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $180$ | 
| Number of conjugacy classes in this autjugacy class | $9$ | 
| Möbius function | $-27$ | 
| Projective image | $(C_3\times \GL(2,4)):S_4$ |