Properties

Label 12960.bu.4.b1.a1
Order $ 2^{3} \cdot 3^{4} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_3^3:S_4$
Order: \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,6,3,5,7,9,8,2,4)(10,12,11,13,14), (2,6,7), (10,13,12,14,11), (2,4,7,3,6,9)(5,8), (3,9,4), (1,8,5), (4,9)(6,7), (5,8)(6,7)\rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:(F_5\times S_4)$
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
$W$$C_3^3:(C_4\times S_4)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_3^3:(F_5\times S_4)$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$D_5\times C_3^3:S_4$
Maximal under-subgroups:$C_5\times C_3^3:A_4$$C_5\times C_3^2:D_{12}$$C_5\times C_3^3:S_3$$C_3^3:S_4$$C_5\times S_4$

Other information

Möbius function$0$
Projective image$C_3^3:(F_5\times S_4)$