Subgroup ($H$) information
| Description: | $C_5\times C_3^3:S_4$ |
| Order: | \(3240\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Generators: |
$\langle(1,6,3,5,7,9,8,2,4)(10,12,11,13,14), (2,6,7), (10,13,12,14,11), (2,4,7,3,6,9)(5,8), (3,9,4), (1,8,5), (4,9)(6,7), (5,8)(6,7)\rangle$
|
| Derived length: | $4$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_3^3:(F_5\times S_4)$ |
| Order: | \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_4$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2$, of order \(2\) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_4\times S_3\wr S_3$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| $W$ | $C_3^3:(C_4\times S_4)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $C_3^3:(F_5\times S_4)$ |