Subgroup ($H$) information
| Description: | $C_5\times A_4$ |
| Order: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Index: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(1,2,4)(3,5,6)(7,9,8)(10,12,11,13,14), (10,13,12,14,11), (3,9)(6,7), (5,8)(6,7)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^3:(F_5\times S_4)$ |
| Order: | \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $W$ | $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $27$ |
| Möbius function | $0$ |
| Projective image | $C_3^3:(F_5\times S_4)$ |