Properties

Label 12960.bu.216.bc1.a1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times A_4$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,4)(3,5,6)(7,9,8)(10,12,11,13,14), (10,13,12,14,11), (3,9)(6,7), (5,8)(6,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^3:(F_5\times S_4)$
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$F_5\times S_4$
Normal closure:$C_5\times C_3^3:A_4$
Core:$C_5$
Minimal over-subgroups:$C_5\times C_3^3:A_4$$D_5\times A_4$$C_5\times S_4$$C_5:S_4$
Maximal under-subgroups:$C_2\times C_{10}$$C_{15}$$A_4$

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$C_3^3:(F_5\times S_4)$