Properties

Label 12960.bq.540.m1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,6)(4,9,7)(5,8)(10,14,12,11), (4,7,9), (7,9), (10,12)(11,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $F_5\times S_3\wr C_3$
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times S_3\wr S_3$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_{12}:C_2^3$
Normal closure:$F_5\times S_3^3$
Core:$C_1$
Minimal over-subgroups:$S_3\times F_5$$C_6.D_6$$C_6.D_6$$C_6.D_6$$C_4\times D_6$$C_4\times D_6$$C_4\times D_6$
Maximal under-subgroups:$D_6$$C_3:C_4$$C_{12}$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$135$
Möbius function$0$
Projective image$F_5\times S_3\wr C_3$