Properties

Label 1296.891.2.d1.a1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^2:D_{18}$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(2\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $a, c^{6}d^{4}, c^{14}, b^{3}, d^{2}, c^{9}, b^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6^2:D_{18}$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_3^4.C_3.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times C_3^2:D_{18}$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:D_{18}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_6^2:D_{18}$
Maximal under-subgroups:$C_2\times C_3^2:C_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$C_3^2:D_{18}$$S_3\times D_{18}$$C_6:S_3^2$

Other information

Möbius function$-1$
Projective image$C_2\times C_3^2:D_{18}$